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Sphere-Plane and Sphere-Groove Pairs," G.N. Sandor, D. Kohli, M.V.
Hernandez, and A. Ghosal.

2) Kinematic Analysis of Four-Link Space Mechanisms Containing
Sphere-Groove and Sphere-Slotted-Cylinder Higher Pair," A. Ghosal , D.
Kohl I, and G. N. Sandor.

The abstracts of the following Masters Thesis and Doctoral Dissertations
have also been Included in the appendix.

1. "Analysis of Spatial Mechanisms Containing Higher Pairs," Masters
Thesis by Ashitava Ghosal.

2. *Optimization of Spatial Mechanism", Ph.D. Dissertation by Charles F.
Reinholtz.

3. "Kinematic Synthesis and Analysis of Three-Link Spatial Function
Generators with Higher Pairs," Ph.D. Dissertation by Manual V.
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5.a. State of the Problem Studied

Design and analysis theories for planar mechanisms are well developed and such

devices are in common use. However, many automation tasks require mechanisms Wfich

can generate spatial motion. One solution is to employ multi -deg ree- of- freedom,

multiple-input robotic manipulators. However, these devices are limited in speed

and accuracy, and require sophisticated electronic control systems. On the other

hand, sigle-input spatial mechanisms, the topic of this research, are purely

mechanical, and are better suited for performing highly repetitive automation tasks

of limited complexity more efficiently, reliably and economically than robotic

manipulators.

Single-input spatial mechanisms are much more difficult to design and analyze

than planar mechanisms. As a result, their use to date has been quite limited.

This is especially true of spatial mechanisms containing higher pairs (joints Vhich

-develop only point or line contact and allow several degrees of freedom of relative

motion).

The research being conducted under this grant attempted to develop simplified

theories for designing and analyzing single-input spatial mechanisms.

6.b. Summnary of Host Important Results

Accomplishments to date include vector-theories for the analysis of spatial

function, path and motion generators, containing higher-pair joints which allow

minimizing the number of mechanical parts. For example, a newly analyzed class of

spatial function generators has only two moving links: the input and the output.

Also completed are design theories which assure that a synthesized mechanism is

free from the "branching defect" (i.e. satisfies the physical motion requirements

as well as the mathematical criteria. Additional theories have been developed for

synthesizing several types of single-input spatial motion generator mechanisms to

have complete input crank rotation, to have optimal transmission characteristics

and to have the correct order of output positions.
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Methods have been developed for efficently formulating and solving systems of

non-linear equations which commonly arise in the synthesis of spatial mechanisms.

It is believed that the theories developed under the sponsorship of this grant

have greatly expanded the utility of spatial mechanisms in two important ways.

First, it has led to simplified design and analysis theories for spatial mechanisms

containing higher pairs. Second, it has produced a new "wholeistic" approach to

spatial mechanism design, wherein many of the "real-world" constraint conditions

are considered in the design process.

5.c. List of Publications
1. "Kinematic Analysis of Three-Link Spatial Mechanisms Containing Sphere-

Plane and Sphere-Groove Pairs" G.N. Sandor, D. Kohli, M.V. Hernandez and
A. Ghosal, Proceedings of the Seventh Applied Mechanisms Conference, 1981
pp. XXXII-1 to XXXII-11; Mechanism and Machine Theory, 1984.

2. "Kinematic Analysis of Four-link Space Mechanisms Containing Sphere-Groove
and Sphere-Slotted-Cylinder Higher Pairs," A. Ghosal, D. Kohli, and G.N.
Sandor, ASME paper 82-DET-123, Presented at the 1982 ASME Mechanisms Con-
ference.

3. "Analysis of Spatial Mechanisms Containing Higher Pair," Masters Thesis by
Ashitava Ghosal, Presented to the Graduate Council of the University of

Florida, August, 1982.

4. "Optimization of Spatial Mechanisms," Ph.D. Dissertation by Charles F.
Reinholtz, presented to the Graduate Council of the University of Florida,
August, 1983.

5. "Kinematic Synthesis and Analysis of Three-Link Spatial Function Genera-
tors with Higher Pairs," Ph.D. Dissertation by Manuel V. Hernandez, Pre-
sented to the Graduate Council of the University of Florida, April 1983.

5.d. Participating Scientific Personnel

Personnel Drawing Support from this Project:

1) Dr. George N. Sandor, P.I.
21 Dr. Dilip Kohli, Consultant

Mr. Ashitava Ghosal, earned Ph.D., August, 1983.
Dr. Charles Reinholtz, earned Ph.D., August, 1983.

5) Mr. Partha De, Master's Degree Candidate

Personnel Contributing to the Research but not drawing support from this
Project:

1) Mr. Xtrong Zhuang, Visiting Engineer from the People's Republic of China.
2) Dr. Manuel V. Hernandez, earned Ph.D., May, 1983.
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KINEMATIC ANALYSIS OF THREE-LINK
SPAT[AL MECHANISMS CONTAINING

SPHERE-PLANE AND SPHERE-GROOVE PAIRS

GEORGE N. SANDORI
220 MEB. University of Florida. Gainesville, FL 32611I. U.S.A.

DILIP KOHLIt
University or Wisconsan, Milwaukee, WI 53202. U.S.A.

and

MANUEL HERNANDEZ, Jr. and ASHITAVA GHOSAL§
University of Florida. Gainesville, FL 32611, U.S.A-

Abstract-Kinematic pairs in a spatial mechanism are viewed either as allowing relative screw motion
betwen liaks or as constraining the motion of the two chains of the mechanism connected to the two
elements of the pair. Using pair geometry constraints of the sphere-plane and sphere-groove kinematic
pairs the dislacement. velocity and acceleration equations at derived for, R-,S P-Ar. R-SP -P. P-Sp-p,
P-Sp-R and R-SS-C three-link mechanisms. For known values of the input variable. other variables
ame computed in dlosed form. The analysis procedures are illustrated using numerical examples.

L INTRODUCrION closed-form displacement relations of RCCC mech-
The mechanisms containing higher pairs such as anisms. Wallace and Freudenstein[7] also used vec-
cams, sphere-plane, sphere--groove, or lts to obtain dosed-form displacement relations or

- Z cylinder-plane provide the designer with the capabil-. RRSRR and RRPLRR mechanisms.
ities of designing machines and mechanisms to satisfy . Yang[8l proposed a general formulation using dual
more complex and exact functional requirements. numbers to conduct displacement analysis of

-than feasible with only lower-pair mechanisms. These RCRCR spatial five-fink mechanisms. Soni and
mechanisms in geeal are compact and contain Pamidi [9) extended this application of (3 x 3) matri-

1:*s fewer links than those with lower pairs. ces with dual elements to obtain cl'osed-form dis-
*I'm recent years, there has been considerable devel- placement relations of RCCRZR mechanisms.

opatent in the tools for kinematic analysis of spatial Yuan[OJ employed screw coordinates to obtain
mechanisms containing lower pairs. closed-form displacement relations for RRCCR and

Kinematic analysis of space mechanisms was ini- othe spatial mechanisms.
tiated by the significant contribution of Jenkins and Crossleyl I I] Sharma and
Dimentberg~l]. Dimentbergj2, 31 demonstrated the Torfasn[121, Dukkipati and SoniEl31 used the
use of dual numbers and screw calculus to obtain method of generated surfaces to conduct analysis of
closed-form displacement relationships of an single loop mechanisms containing revolute, pris-
RCCC j and other four-, five-, six- and seven-link matic, cylinder, helical and spheric pairs. Herzenberg
spatial mechanisms containing revolute, cylinder, and Denavit[14J contributed iterative techniques to
prismatic and helical pairs. Denavit[4) derived conduct displacement analysis of spatial mechanisms
closed-form displacement relationships for a spatial using (4 x 4) matrices containing revolute, prismatic,
RCCC mechanism using dual Euler angles. Yang(5) cylinder, helical and spheric pairs. Uicker[l 51 ex-
also derived such relationships for RCCC mnech- plored in further detail the (4 x 4) matrix approach
anisms using dual quaternions. of Hartcnberg and Denavit. Soni and

Vectors were first used by Chace[61 to derive Harrisberger[l61 contributed an iterative approach
for performing kinematic analysis using (3 x 3) with

_________ dual elements. Kohli and Soni[17. l81 used finite
tResearch Professor of Mechanical Engineering, screws to conduct displacement analysis of single-
OAsocate Professor of Mechanical Engineering, loop and two-loop space mechanisms involving R. P.
§Griduate Research Assistants in Mechanical En- . 1, and S pairs.

pineng.
R: revolute. P': prismatic. C: cylindric. S: spherical. Sp: Bagcif 191 used a (3 x 3) %crew matrix for displace-

spherc-plane and Sg: sphere-tiroove joini. ment analysis of a mechanism containing tw~o revo-
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lute pairs, one cylinder pair and one spheric pair. Step 5. Force the cylindrical (C) joints as revolute
Dobrovolski[20] used the method or spherical images (R) or prismatic (P) joints by setting the sliding or the
to analyze spa-r mechanisms containing revolute and rotation equal to zero at cylindrical pairs.
cylinder pairs. Duffy[21,22. Duffy and
Habib-Olahi[23 used the method of spherical tman- 2. THE THREE-LINK MiECHANIS,M AND ASSOCIATED
Sks to derive displacement relations for five and six VECWRl

link mechanisms containing involute and cylinder Figure I shows the initial position or two rigid
pairs. Keller[25) and Gupta[26) also analyzed space bodies grounded via cylindrical pairs and connected
mechanisms containing revolute, prismatic, cylinder, together by a sphere-plane pair. Also shown are the
helical and spheric pairs. Recently Kohli and following vectors and scalar quantities:
Soni[26) and Singh and Kohlit2"1 used the method of u, unit vector defining the direction of the axis of
pair constraint geometry and successive screw dis- cylindric pair A.
placements to conduct analyses of single and multi- u, unit vector defining the direction of the axis of
loop mechanisms. cylindrical pair B.

In the present paper, screw displacements ex- P vector locating the axis or cylindric pair at A in
pressed in vector form and the pair geometry con-. the fixed coordinate system.
straints. also expressed in vector form, are used to Q vector locating the axis of cylindric pair at B in
derive the displacement, velocity and acceleration the fixed coordinate system.
equations for R-Sp-R, R-Sp-P. P-Sp-R, P-Sp-P A unit vector perpendicular to the plane of the Sp
and R-S-C three fink mechanisms. pair embedded in body 1.

Since Revolute (R) and Prismatic (P) pairs are A' vector embedded in body 2, congruent with A in
special cases of the cylinder pair (in prismatic pairs, the starting position, as shown in Fig. i.
the rotation is zero; for revolute pairs sliding is zero). R vector locating point R, the sphere center in the
we derive the analysis. equation for C-Sp-C and fixed coordinate system.
C-Sg--C mechanisms, and then force rotations or 0

a rotation of link I about axis u.
translations at one or more pairs to zero. to obtain 0, rotation of link 2 about axis u,.
the equations for the above described three-link one SA translation of link I along axis u.
degree of freedom mechanisms. S# translation of link 2 along axis u.

Briefly, the procedure for obtaining the analysis
equations is as follows. Figure 2 shows the C-Sg-C mechanism with all

Step 1. Consider the C-Sp-C mechanism and the associated vectors and scalars. Description of all
C-Sg-C mechanism. parameters are the same as for the C-Sp-C mech-

Step 2. Separate the two moving links (Bodies I & anism except for the direction of the vector A, which
2) at the sphere-plane pair for the C-Sp-C case and is now along the direction of the groove and also the
at the sphere-grove pair for the C-Sg--C. addition of So, which is the translation of the sphere

Step 3. Use the screw displacements in vector form along the direction pfA .. _.. . ... .
to describe the new ('th) position of the sphere-plane
(Sp) or sphere-groove (Sg) pairs from two sides of 3. PAIR GEOMETRY CONSTRAINT EQUATIONS
the pair. Figures 3 and 4 show a sphere-plane (Sp) pair and

Step 4. Use the pair geometry constraints on the a sphere-groove (Sg) pair with the vector R locating
position of the pair obtained from two sides. R, the sphere center. The vector A, in the Sp pair is

defined as a vector perpendicular to the plane in
which the sphere moves. In the Sg pair, the vector A
defines the direction of the groove.

Z S,

Fig . I. C'-'¥ C mnechjniim. Ia. 2. C-S$--C ,mechanism.
L .
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We can now define the vectors R, A1, R and A,. After some displacement of the mechanism, these
These new vectors will define the displaced position vectors, in general, will separa'e due to the relative
and direction of initially coincident point R and motion of the joint elements. Noting that both bodies
vector A in bodies I and 2 respectiveily after some I and 2 are connected to ground by C pairs, we use
relative motion between bodies I and 2. The prime the equations developed by Kohli and Soni[26] for
notation here is used for new position expressed from expressing the direction of a vector embedded in the
the motion of body 2, whereas the unprimed no- rigid body and also the displaced position of a point
rations are used for new positions expressed from the of the body after a rotation 0 about the cylinder axis
motion of body 1. and a transition S along the same axis. Using the

The pair geometry constraint equation for the Sp prme notation for positions of the vector A' obtained
pair ist from the motion of body 2 and the unprimed no-

tation for positions of vector A (assumed frozen in
nO___(( body I in the first position and then moving with

W -2body 1) from the motion of body 1. the displaced
directions of the vector A in bodies I and 2 are

which expresses that any relative motion between the
sphere and the plane must be perpendicular to the A, cos 0,,JA - (A- a,)ul + sin 0,, x A).vctor A; (Fig. I).

The pair geometry constraint equation for the Sg + (A- u)u (3)
pair is A; = cos 0JA- (A- u,)u,] + sin 0,,(ua + A)

dR(2 d'R) d + (A u,)u, (4)•~~ _ A!So,) n = 0, 1, 2 .... 2
Also. the displaced position of the point R in rigid

where Scj is the translation of the sphere along the bodies I and. 2 are given by:
groove in the direction of A;. The constraint equation
for the Sg pair expresses that any relative motion R= cos OB(R - P) - ((R - P)- u4] + sin Os,,
between the sphere and the groove must be along the - P)) + [(R - P) uJluU

X (uA X(R-))+R ) JUgroove which is in the direction of A; (Fig. 2). + V'" + Ps+n (5)
4. WORKING EQUATIONS

Referring to Fig. 1, let A be a vector in body I A' R,=cos0[(R-Q)-((R-Q).u,)us]+sin 0,
a momentarily congruent vector in body 2 in the first
position, perpendicular to the plane of the Sp pair. x (ui(u, x (It - Q)) + [(R - Q)- ua]u,

+ aS 4 -+ Q. (6)

Using the identity [A - (A" uAuA = (U. x A) x uA,
introducing the vectors

-. K=R-P

*- L=R-Q

and the following notation for any two vectors u, and
A D).

Fig. 3. Sphere-plane (S,) pair. Uc, (Uc x D) x Uo. (7a)

we can substitute eqns (7) and (7a) into eqns (5) and
(6) to get

R,= R + uAS, + (cos O,,- l)U4 X + sin 0(uA x K)

(5a)
A

Rand

Fig. 4. Sphere-groove (S,) pair. R; = R + uS, + (cos 0. - I)U8 ,. + sin 0,,(u, x L).
(6a)

Vt. Appendix for the derivation from the complete We now lake the time-derivatives of equations for R,
contraint equation, and R; and using the notation of dots above the! '

• ' -- - - . ... .. . . . . . . . . . . . .. . . . .. . . . . .. ... . . .
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variables to indicate time derivatives, we obtain the For the Sp pair,
:oloing equations

.(-R' ( - R-) - , 0- (20)

uS,, + [cos o,(u, x K) - sin 0.,u#Aj, (8)
For the Sg pair,

.t; - u,. , + [cos 0 ,(u, x L) - sin G,,ua1,t. (9) (Rj - ;) - A; Sos (21)
O[cos O4 tUnx + sin 04tau. x K)10,s(20 a 2arS) d (2x)

[cosu+[ ,Ou xK)-sin~u,,Io-A (10) Observe that eqns (20) and (21) are eqns (1) and (2)
+ with nt =0.

uS. - [cos OU, + sin 0 x L)10 The cylindrical pairs used in the derivation may be
S - [nforced to work as prismatic (P) pairs by letting 0 a 0
+ [cos 0,(u, x L) - sin 0BUajUL,- (I1) or may be forced to work as revolute (R) pairs by*l letting S -= 0.

substituting eqn (7a) into eqn (4). using eqns (5a) and

(6a). and by making the following substitutions 5.1 The P-Sp-P case

For this mechanism, we use V,. m 6, a 0 and eqns
N1 = cos OA(u, x K) - sin OAUk (14) and (17) are simplified to

(12)
My = cos 0,,(u,, L)- sin 0,,U,, Rj - u, SV - us.,

and
Nj = cos O,,U,, + sin O.,(u, x K) A; = A.

(13)
NV - cos 0U&, + sin O4(u, x L), Substituting in eqn (20), we get

we can derive the following working equations (uS 4 - uS4)- A = 0 (22)

A; - A + (cos 0, - I)Uju + sin O8(u, x A) (14) which simplifies to the input/output equation

[cos 0(u, xA) -sin UAu,, = VJh (B5) S, .. (23)

[C =[os 0.&n x A) - sin o,,U. #*A

-[cos O*Ux + sin Os,(u, x A)J0, 5.2 The R-Sp-P cw

", is the input; Sa is the output and 0, S S, a 0.
. ": ; =V - W. (16) Equations (14) and (17) with 0, m S, S 0 substituted

in eqn (20) provide.
4 . te *re
4 w [-ere -nS (CO0 - I)U- + sin ,(,a x-K))- A = 0.---

and V, - cos 0,(u, x A) - sin 0,U,, A we obtain

., W 4 = cos OUA + sin 0s,(u, x A) . =[(cos 0,V .- I)U, + sin 0,,<u, x K)] - A.24

R, - R=A, + (cos ,aj - )U.X + sin 0,(u, x K) u.2A

-uIS 4s-(cos0, s - I)UL 5.3 The R-Sp-R case
We have for this case SA Ss m 0, and eqn (14) and

(17) are simplified to obtain

f,- A; U u4.14 + MJ- ,, U -_I1 M 1d, (18) R- R= (cos 0.- t)U.A + sin O,(uA x K)

- ,-; = ,-NA,,,+N ,,, -(cos 0s- )U, -sin 0,,(ux L)

-- u1, + N,112 - NI,O' (19) and

S WSPI.ACEMF.NT ANALY'SIS
To analyse the displacements or a particular 3-link A, A + (cos 0,- I)U,4 + sin Oa,(u, x A).

one-degree-of-frcdom mechanism containing either Substituting the above equations into eqn (20); and
the Sp or Sg pair, we need only to take working eqn
(I7). apply the constraints of the particular grounded simplifying the resulting equation, we obtain
pairs and then substitute the results into the following
pair geometry constraint equations for displace- - I -A + (cos 0s - IX - Us. A - S, U 4 1

Ments. + sin O,(u a x L)- A - S," (us xA)1 0 (25)

el,' ' .' ", ' "-" .- ." ." " , " • " -". ". " '" , , , , '. . .. . .. ... . . . . . " ' -. ." . . . . ... .. . . . . .. ..
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where S, is the known vector Substituting in eqn (21). we have

S, = (cos 0 , - I)U.x + sin 0,,(u, x K). (26) uS- S + (cos0 - I)U.

Equation (25) can be solved for 0s, by using the + sin 0,,(U, x L) + ASci 0.

follobing identities Taking the dot product ofeqn (31) with (A; x us) and

I . -" upon simplification, we getI', -tan- 2tan-

cos 02 = i; sin 0, 2 (27) cos 0,[SI - (A x us) + UL, -(A x us)] + sin 0s,ta2 8_*
I + tan- +tan

22 x IS, UA + U&L" UJ- (us x L)" UsA - 0. (32)

and simplifying the resulting quadratic equation to Again, #, can be obtained by substituting eqns (27)
yield into eqn (32) to obtain a quadratic whose solutions

- are
0' . - b +_/(bl - c(c - 2a))

-- tan 2j(8 , =  b  -11a 2 + b - cz)  (33)

where: n2 j c-a
U -UL A - Si" Us where

b = (u x L) A - Sf (u, x A),a = S -(A x us)+UL. -(A x-us)
sc - s, A.

5.4 77e P-Sp--R case c€ - (as x L)" UA.
Here. 0, a S. w 0 and we have

Taking the dot product of eqn (31) with (us x L)
'n " - (cos 0," - )U&L - sin 0",(u, x L) and simplifying, we get

. A; -A + (cos go - I)U,, + sin 04(us x L). a, xL)- (cos e,- 1)U. ("I x)

A (us x L)

Substtuting the equations above into eqn (20) and sin 0,,(u, x L)- (up x L)
simplif)ing, we get A- (uxL) 3

(cos 0,- l)- UL -A - S,,(u,. UA)l + sin V, Taking the dot product of eqn (31) with u, and

[(as x L)- A - $ u, (us x A)) - S, ,A A - 0. (29) simplifying, we get

Substituting eqns (27) in eqn (29) and simplifying the S [Si - (cos - I)U&L - sin Os,(u, x L)

resulting quadratic gives us -S,$Ai • . (35)

tan = - -b /(b -c(c2a ) (30) 6. VELOCITY AND ACCELERATION ANALYSIS

nTo obtain the velocity and acceleration relations,

heiiwe can either (a) take the derivatives with respect to.' where this time
• .time of the displacement equations or (b) use the

-Us, A - SAu 4 U. 4 ) higher order constraint equations. For the P-Sp-P
•case, taking the derivative of the displacement equa-

S = (us x 1.)- A - S,,u, -(us x A) tion is trivial. But For the other cases, this procedure

C - A. is cumbersome. It is therefore more convenient to just
use eqns (14H19) in the following constraint eqns

5.5 The R-Sg-C (36)-(39). which are eqns (1) and (2) with n = I and

Only S, in eqn (17) is identically zero. so we get For the Sp pair

R,-R,.= -R uSs, + S,- (cosO4- I)UL (f,- ft;)-A;+(R,- R;)-A; =0 (36)

-- sin 01(u x L)
and

where S, is given by ¢qn (26). Also.
.- (,-R;). A; + 2(A, - A;)A; + JR,- . ( 7;

""A; A + (cos 0, - I)El1., + sin 0., x A) -0O. (371



,%p j

.mint 168 p. 1. GEORGE N. SANDOR e at

For the .T pair where

k; =A + A; S(3S) D .M.*- A;-(Rj- R)-V.. (46)

and
R- It X;Scj + 2A S + A;. O  (39) 6.4 The P-Sp-R case

Equations (18) and (19) are

6. The P-Sp--P case
Here we can use the time derivatives of the dis- A; - A; -u -M6.,

placement equation to get t,- u.9, u,+ NIj,- M/,i

= A also.

A;-.V, and VJ.- s,-#w4o.

A (40) Substituting in eqns (36) and (37) we get

(41) A, (47)

62 The R-Sp-P case and
Equations (18) and (19) become

1%,- 1k; = M,4 -. US.- D (u-f .+ 2(.v- v*)V'
and A (N -A'- 2NMI,- V,

also 
.... N 4 +M,69 v, W (48)

A;= 1 A =. A 0- where Dis given by equ(46).

Sabstittadng in eqns (36) and (37), we get 6.5 The R-Sg-C case

Only S4. S,, and . are zero and eqns (18) and (19)

and.* A ~(42) become:

.. -A #

.NAJ 0"lM AJAM (43) and

iiA a'.N+ . 4 1  U

6.3 The R-Sp-R case +No _ j- N....

S a S s .s aj.. ,, .S o, also,

Equations (18) and (9) become V,, and X - - 1VSO1.

Substituting the expression for (A, - lA.) just obtained

and into eqn (38) we get

l - s = -N 'A + M, + M4,6,. , -. - ,= A;.I. + V,,S 6 (49)
Also.

A; V.#. A;- Vx6r - 01,. S. and , are unknowns in eqn (49).
Taking the dot product of eqn (49) with (A. x u,).

Substituting in eqns (36) and (37). we get we get

M,"A; ( (MA,0, - NIA.,) • (A; x u) = V,- (A; x u,)6,,,, ,- A; - (R, - R,) -V,O ) or

and Mq,- A, x u. (50)

A' + MA ,. A' 2l 1' (SV , + N,)- A; x u"

Aa D d41  D D) d
Now, taking the dot product or cqn (49) with

N," A, - 2M," 2M," V4 - (R, - R,)- W4 [A; x (S,, V+ N+ ,)I. we have

(45) (M 4 ., - u.S)" A; x (S,.,Vm, + NJI,) -0

" --.... i... ..- ,7. ...
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or Letting X be equal to the r.h.s. of eqn (53) and by
using the same technique of taking the dot product

-. Mi4 - A; x (SQYV+ M,) O (5) of eqn (53) with the proper cross-products, we will
w i, . A; x (SV* + M,) obtain the following

Again taking the dot product of eqn (49) with X - A x u (54)
iE ( x (Sta4 + M)+x

go X~ X- A; X (SGJV* + INI4)55
we have w, -A; x (SQ., + MN

(Mqpi~v - A,~) 3a x (SQsv + M,) 0 1 Xux (S1 V4 ,-*MR) (56)
; - u, x (SV,+ M,)

-or

7. NUMERICAL EXAMPLES
N, - Up x ($€IV4 + Me2) I. Analysis or a R-Sp-R mechanism.
A; ' . x (4V,+Y4 -Me) "  The sectors describing the mechanism are

Acceleration: Substituting the expression for u,=0;+l+0,
(1k - A? obtained earlier for the R-Sg-C case into
eqn (39. we will Set u.= (3+ lJ+O0)lf1(l0)

-N, + M ,,f- U~e + N, ,2*- M,,je Q - 0 i + 0.75k

-VA (v - wAD , + 2vO,44 + A;9Cj RP- U + ,4f +
or A - O + 01 L

ug , + A;S§ + (ScqjV + Ma) 0, The plot of the output displacement (8,). velocity

- - N, j+ M/, + +( and acceleration (.) are given in Fig. 5.
8 2. Displacement. velocity and acceleration analysis

-2V,0,$q (53) of a R-Sg-C mechanism.

-4 ..-

VitOCITT

A1

] ACCtI&ATIOM*

Fil. 5. Plot of 0.. 0E and if, ror the R-S,-R mchanim.
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Table or displacements. velocities and accelerations

A, e 1 , 11 sa S i I s a is s

S 2. 2 .4t --.- -. 13 -1.56 -. 1 .15 1.76 .36

40 11.99 .1! -1.21 -. Z" -1.95 -. 4.1 1.26" 1.9 -. 3Z

so -9i.31 -3.3, 32.3 -2.0. I.", 5.s 2.04 -.81 -4.0712 !0 -111.. Z-4 .26 AD. -.6Z 1.99/ -. 55 1.11, -t.$9 -. 43

160 -.9J.34 .3 At .56 1.2 -1.0 -.0& -A.6" .2s

390 -11L..04 .46 .03 1.32 .63 *1.0io -1.06 -1.20 .90

20 -61.471 .51. .06 JL.51. .01. -. 31, -1.65 -. 414 1.23.

23. -,.0.35 .54 .003 1.3; -0.5 -. 1 -. 6$ .6,. 1.2.

320 -19.17 .51 -. 07 .36 -. 91 -. 1 -1.05 1.23 .917

335' -2.2 .45 -.1K .13 -L.4.3 -. 77 -IS 1.69 .52

The mechanism parameters are which the parallel of the pair are generalized to form
equidistant curved surfaces.
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APPENDIX (t,- t;) A= - s,- A,. (i)
I. Sphere-plane co-tatraint equation

The complete displacement contraint equations of the Equation (c) can now be substituted in eqn (i) to get
Sp-pair are

R,- R,= $,,,, (a) or

Sa;M=0 (b)
which i. really

where a; is a unit vector in the plane of the Sp pair.
perpendicular to A; and is in the direction of the relatie d
motion of point R of body. I with resr.ect to the initially -[R,-R;-A;= . k)
coincident point R of body 2.

Derivatives o equations (a) and (b) with respect to time Ace'eretti.ni: For n -2. cqns (a) and (b will be
are taken to give the following velocity and acceleration
c.'notraint equations -

*s o*% % -,% %. " . -. o. .o " -. ".. .-. . . . . . . . . . ..
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and or

Taking the dot product orteqn (1) with A, and substituting Substituting eqns (c) and (f) into eqn (a) gives us

from equ (im). we wiB1 ge Which is2

(R, -IA; ,- - 2 ,,--i- ,, (R, - R?.- A1 -0. (0)

XNALYSS C142MATIQIJE DES MECAN4ZSMES SP14TlAUX A T;OIS BARtES CONTE4N~T LES PAIRES SPHERE-PLAN
CT S?HERE-RAINCRE

G.N. Sandor, D. Kohi. K. Hternandez, Jr.,* A. GhosaI

Rork- On consid.%re %jdn~raIame,L qu'unt pazre dans un L-canisme apatial permet un Uouve-
sent relatit do vis entre 1.. me~rbres, Ou ;u*ello restraint I. naouvement des 41lrments qui
lut *:At reljt's.

En wriploy.nt lea contraintes q#omtriq-.zs des paires de sphlre-plan et de sphbre-
rainur* cinfaiatiques. Its dquatimms pou.r It d~p1ace.-:nt, Ia Vitesse at Ilacclfration sont
dfritles pour lts rn~cAnsmes avec ecois vrrbres R-Sp-R. R-Sp-P. P-Sp-P. P-Sp-R et R-Sr-C
(2: r4volute; P: prina'atique; C: cylndriqu*; S: spha~rique; Sp: aphbre-plan; Sr: sphere-
rainure). Pour les valour. connues do I& variable dentrfe. ;.a autres variables sont cal-y ul4Fes par des forrules non-it4ratives. Le prochdf d'analyse eat illustr6 par des exemples

AA
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KIVEMATIC &NALYSIS OF FOUR-LINK SPACE MECHANISMS CONTAINING SPHERE-GROOVE AND SPHERE-SLOTTED-CYLINDER HIGHER PAIRS

ASHITAVA GHOSAL DILIP KOHLI GEORGE N. SANDOR
Research Assistant Associate Professor Research Professor and Director

Department of Mechanical Engineering of Mechanical Engineering Mechanical Engineering Design and
University of Florida University of Wisconsin - Milwaukee Rotordynamics Laboratories

Gainesville, Florida

The geometric constraints of two higher pairs, namely sphere-groove and sphere-slotted-cylinder, are derived.
Using these pair geometry constraints, input-output relationships are derived for several mechanisms containing
sphere-groove and sphere-slotted-cylinder pairs. The input-output equation for the R-Sg-R-R linkage is obtained
as a fourth degree polynominal in the half-tangent of the output crank angle. For other cases of mechanisms con-
taining a sphere-groove pair (such as R-Sg-R-P, R-Sg-P-R) the input-output equation is quadratic. The input-output
equations for the R-Sc-C-R and R-Sc-R-C are obtained as eighth degree polynomials in the talf-tangent of their

* output angles. For mechanisms with prismatic output containing a sphere-slotted-cylinder pair, the input-output
equation is a second degree polynomial in the output translation.

2. TIhRODUCTION Vectors were first used by Chace [7,8] to obtain
vector equations for position, velocity and accelera-

Mechanisms containing higher pairs such as cams, tion analysis.

sphere-plane, sphere-groove or sphere-in-slotted-
cylinder, provide the designer with opportunities for Yang [91 used dual numbers to analyze RCRCR five
designing mechanism and machines to satisfy more link spatial mechanisms. Soni and Pamidi [10] extended
complex and exact functional requirements than fea- this application of (3x3) matrices with dual elements
sible with only lower pair mechanisms. Higher pair to obtain closed-form displacement relationships for

mechanisms in general are compact and have fewer RRCCR spatial mechanisms. Soni, Dukkipati and Huang
links. [11] also used (3x3)matrices with dual elements to

analyze 6 link single loop and two loop spatial mecha-
In recent years there has been considerable nisms containing revolute, prismatic and cylindrical

development in tools for kinematic analysis of spa- pairs. Yuan [12] developed the use of screw co-ordi-

tial mechanisms containing lower pairs, but very lit- nates by way of which they developed closed-form dis-

tle has been done in analyzing spatial mechanisms placement relationships for all 3R-2C type spatial
with higher pairs. mechanisms. Duffy [14] has demonstrated the use of

spherical trigonometry and dual numbers to obtain

Kinematic analysis of space mechanisms was ini- closed form input-output relation for four-, five-,
- tiated by the significant contribution of Dimentberg and six-link spatial mechanisms. Duffy and Crane
. [1. Dimentberg (2,3] demonstrated the use of dual- (15] also use the same method for the displacement

mumbers and screw calculus to obtain closed-form die- analysis of a general spatial 7-link, 7R mechanism.
placement relationships of an RCCCI and other four-,

five-, six-, and seven-link spatial mechanisms con- Iterative techniques for analysis of spatial

% taining revolute, cylindric, prismatic and helical mechanisms were developed by Hartenberg and Denavit

pairs. Denavit [4] derived closed-form displace- [16]. Uicker [17] explored in further detail the

ammit relationships for an RCCC mechanism using dual matrix approach of Hartenberg and Denavit. Soni
* Ruler angles. Yang 15] used dual quaternions to get and Harrisberger [18] used (3x3) matrices with dual

displacement relationships for an RCCC mechanism. elements for an iterative approach to analyze spatial
Wallace and Freudenstein [6] used a geometric con- mechanisms.
figuration method to obtain displacement analysis of
a general RRERR

2 
linkage, also called the Tracts cou- Finite screws were used by Kohli and Soni [19,201

pling. to conduct displacement analysis of single-loop and
two-loop space mechanisms involving R,CP,H and S

KRevolute, C - cylindric pair pairs. Recently Kohli and Soni [21], and Kohli and

E- planar pair Singh [221 used the method of pair geometric con-

straints and successive screw displacements to con-

duct analysis of spatial mechanisms containing lower

and higher pair. Sandor, Kohli etc. [23] used the

above method to conduct displacement, velocity and

acceleration analysis of three link spatial mechanisms

containing sphere-plane and sphere-groove pairs.

In the present paper, finite screw displacement,



I

expressed in vector form, and pair geometry con- u it vector defining the direction of the third
straints, also expressed in vector form, are used to .3 iat axis in the initial position - cylinder pair
derive the displacement equations for four-link spa- 3.
tial mechanisms containing sphere-groove and spriere-
in-slotted-cylinder pairs. Although, the analysis u unit vector for defining the direction of the
of spatial mechanisms containing sphere-groove and fourth joint axis - grounded cylinder pair 4.
sphere-in-slotted-cylinder pairs can be done by
modeling these higher pairs as SP3 and RRP3 , the P locates the first joint axis u
procedure is made unnecessarily complicated by intro- .1
ducing these hypothetical joints. The use of finite
screws and pair geometry constraints avoids this. P3 locates the third joint axis u3 in its initial

position.

P4 locates the fourth joint axis u4 .

A unit vector along the direction of the groove
- e bedded in the groove element.

b unit vector perpendicular to the axial centerline
of the groove defining the orientation of the slot
in the initial position, embedded in the groove
ele=ent.

0- unit vector along the direction of the groove
4 embedded in the groove element.

b* unit vector, coincident with b in the initial

Pposition, embedded in the sphere element.

X c* unit vector initially coincident with c, embedded
in the sphere element.

AC unit vector embedded in the sphere element, ini-
FIGURE 1. THE C-SG-C-C MECHANISM. tially coincident with A

R vector locating the sphere center in the initial
position.

Z_ R* vector locating a point on the groove axis, but
3 initially coincident with R.

rotation of the groove element pivoted at the
f 1 first C joint.

• 3 relative rotation of the sphere element pivoted at

3 the third C joint, with respect to link 3 (Fig. 2).

4 rotation of link 3 pivoted at the fourth C joint.

SS, scalar translation along u1 at joint 1.

4 33 relative scalar translation of link 2 with respect
X to link 3 at joint 3.

S. scalar translation at joint 4.4

FIGURE 2. ImE C-Sc-f.- MECHANISMS. Sg relative scalar translation of the sphere elenent: g along the groove for Sg pair.

3. THE FOUR-LINK MECHANISMS AND ASSOCIATED 
VECTORS

T relative scalar translation of the sphere element
Figure 1 shows the C-Sg-C-C mechanism, figure 2 along the groove for Sc pair.

shows the C-Sc-C-C mechanism. Also shown In the fig-
ures are the following vectors and scalar quantities.
The vectors are denoted by wavy underscores.

u unit vector defining the direction of the first
joint axis - grounded cylinder pair 1.

3S: spheric pair, P: Prismatic pair, R: Revolute
pair.

2
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4. FINITE SCREW DISPIACEWETS
in lbs . of a a or r joint. the translation or .otation reopectio.3

Fig. 3 and 4 show a rigid body E connected to ground notlo'.. ani uhe r41SSItleg .q.ti-. es be coo.4ldebl. simplifiedS.

by mans of one cylinder pair and by a chain con-
tainling two cylinder pairs respectively. By giving
successive screw displaceimentsl and using a shorthand
notation, the displaced position of A and R are
obtained as shown in Table 1.-

ld Otable •

he dsplap0d positin t ofenettar A oeasch to bedy r I 0 f e 3

Is slmby-

(ese 1")( -A)- + *O- ' (V -) ":'(a)

. - . . . .

pee.a pot"1 it as tas vct A. OAe displaced positiont is ivent by

P isa v ector which locates Oto of rotation ol. and I-P cotains the

i1* "Muaetema. which ema be srtttre in te"M of coeatt tislt aftl*0
aw .ffhsts.

It. "ts aed "felols of A "a53 1 1. is ent f it 4 (after *tewA
d~istest !71011* & and 2) Sie salmed as toile"..

n (e I a" (c) RA)
.21 2.1Cc - 1

1
4?IRF TO% S. PHERE-GR03VE 66) PAIR.

2,(am*-)v 4, eas (a
.3K 2 .2 *IYga~
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The constraint equations for velocity and acceleration
can be obtained by taking time derivatives of equa-
tions (1), (2), and (3). The general constraint equa-
tions for Sg pair can be written as:

d d43 d n 1
dtn _j R -t(SgA J), n 0,1,2 (4)

and for the Sc pair

dn 1 43  d n 1,2-OR% Rj) - J), n T 0,1,2 ()

dn  11 43Snt( ).-b. = 0,1,2 (6)d t _j AJ _J

Iuu.t 6. IKE SPhki-I',-SLora~CYLINDER (Sc) PAIR. 6. .XALYSIS OF MECHANISMS CONTAINING Sg PAIR

To analyze four link mechanisms containing an Sg
pair, we need to consider equation (1). The terms
can be expanded as in equations (h), (i) and (J) by

S. PAIR GEOMETRY CONSTRAINTS FOR THE Sg AND Sc PAIRS using proper subscripts and superscripts. In order
to get an input-output relation between e1 and 4 or

Figure 5 shows the sphere-groove (Sg) pair. The S4 (if the fourth joint is prismatic) it is necessary
vector A defines the axial centerline of the groove to ei~inate or S3 (depending whether the third
and vector R locates the sphere-center. Figure 6

shows the sphere-im-slotted-cylinder (Sc) pair. joint is a revolute or prismatic) and S . The Sg
Vector c defines the axial centerline of the groove pair has four degrees of freedom, so the other jointsO vector b is normal to c in the initial position. have to be either P or R joints.
Vectors A, S, and c are all unit vectors. Vector R
locates the sphere center. Vectors c*, b* are also 6a. The R-Sg-R-R Case
shown. In this case 81 is the input, 04 is the output.

The pair geometry constraints for the sphere- All the cylinder joints have to be forced to have
groove and Sphere-in-slotted-cylinder pairs can now zero translation to make them revolute joints. There-
be defined. fore we have the following expressions:

The pair geometry constraint for the St pair is R I R + (cos)I-1)1(ul (R-PI))-u1 1 + sineI(ulX(R-P1))given by (see Fig 1) S. ...

1 43 (7)
R - -S A1  

(1) 1

where R is the displaced Position of R obtained from 43 4 44
43 - Rj3 R - + (cose -l)C 3  + sin( (9)a screw displacement at joint 1; R 3 is' the displaced R_ +J c +3 (9)

position vector of the sphere centir originally loca- 4 4 4
ted by R due to successive screw displacements at R" C 3J and D3j can be expanded like equation

joint 3 and 4; and A is the displaced vector A due to (j) with proper change of subscripts and superscripts.
a screw displacementJat joint 1. Taking the cross product of equation (1) with AI we

The pair geometry constraint for the Sc pair is 1 1 _4 3 A1
given by: !j Aj -j -j

R J R4 J - 1? (2) The left hand side is known since 80 Is the in-
put. Expanding and then simplifying the right hand

Equation (1) and (2) imply that the relative side of equation (10) we have,
displacement in the higher pair can only he along the 1 1 1 43 1 4 1 4
groove. A J = A~ iR - Aj R1 + (cosA 3-1)(A 1'C31 ) + sin03

Also, there can be no rotation about the vector (A 'D31 ) (11)
c. This condition can be expressed as

I 43 T.;,ing the cross product of both sides with
(c 'b1)'b 4 0 (3) 1 e

-J_ j () A 1,D 'we have
I 1 -31 -

where, c . d b are the displaced vectors c and b 1 4 1 4 1 1 4 1 4
due to A- 4 (Cos- 1(A1 C 3 )(A D ( .(R )-(.tD)(2

duo to a screw displacement at Joint 1. and-b 43 is 3 A .. -3 -] .'3
the displaced vector h* due to succeqsive qcrw dis-
placeMents at Joints and 4. Si?*ltifving and noting that equation (12) is actually

a scalar equation as both vectors are along Al, we

4

2. - .
. .-, . - .. . " -., ' . " - , . , _ . ., ...., .. . . -



have, 2 3 2,
x 4i -2. ) + x I(- 3 2-) + x4(4)1 -2 +2a

1 C 4 4 1 1 4 4 ( 4 3 5 4 2 4(Cos3- 1) [A (C (.D .)I ,.-(R .R.)'D. (13)
+33J j A _j _3 + )- 6  0 (20)

•similarily taking cross product with A xC 4 and si--
plifying we have _j .3j where , 1,2,3,4,5 ar defined in Table III.

4, 41" 4
sin- [A -(D .C.) (14)A'-

3 .*.:j .3 j-J).C]

Equations (13) and (14) can be written as

A cos93 -B + A (15)

-A sinS3 
= C (16) -•,

1 4 4 1 1 4 4 f:5:1" ' ---,SZ: 'S d ""i"l
where A- A .(C 3 B A -(R -R )xD .

1
.. 1

-j'~3j .3j. j .j j -3j (7 % ' )- I. D3 P43]
1 1 4 (17) 1-A

C ,, A (R -R )-C- _j 3 '4 (A) .4 ~ ")'u P4((u4-3 4

j j j -j ._. _ (A.'R -A 1' 4
,(K D

3 
. P4x('j-' D3)l

Squaring and adding we have the input-output rela- - -j -. j - -3

tionship as, EQ'C3 -4 j- -. -4,. c

2C 2 C, " - 1% , )) (A . iR
ll  " .. -.

B 2  + 2A,3 + 
.. (180 -3 . , i

Simplifying expressions in (17) it can be shown that . I.( 3 -(c 2 j. - -

all terns A, B and C are linear in sinS4 and cosS4  1. 4. iA. (u 1.C3.D))- .. ) .

(Table II) 
r*!, (u4 (C3 ?3))W

2.bl". .[xEA(u4 (C,'D3 ))I ] A

K. 1 -x3  2W.3

C€1 1  (t ) . MC -.((a . l(!.'9)., Again using cosA3  - 3 sn31 2 3

41 i-!2x~l4l - ll e.Al. i2,4 -CO.,2 ,4-2 + 1l 1+X32 i i+x 3

*~iI " CC3-) * (c.o 4 -)-...I-(C3 .- (C4 3 CC$ 3 )1 + miIne4 -(C 3 .D3 ).. 42 83
x - tan-

(S3 4 3 3.4 . -3 Cnoe.44.fl.CC3U? )".4 I (c -D3) 3 2

sI.iJ. ! j - )* (.31--)4(-.3k 4 4~),u! and us!1g trigonometric identities:
+ j .4 (b)...

-:.4 .... .. • sin=3x3 + cos 3 3 1, (21)

swl,-8,. - * .Ch 6 (d) sin 3 - x3 cos 3 - x 3  (22)

- a . , ) - •P W.
- - we have. x3 - B/C = C/B + 2A (23)

4 using equazion (1) and rak-ng the scalar product with
T - (coes -1l,31b!.' st)4 1* Y )  (a)-. (.'', () AI we ret,

1 1 '-3- 1 1 1U - V: 5 ('i )-A. /A
1 -A1  (24)

. , (,), ) ( S :J -j -.1 -J -.1

So the input-output relation is of fourth degree in Taki:g the derivatives .,f equation (20), (23) and

the tangent of the output half-angle. The input- (24) we ca, obtain expresin., for velocities and

output relationship Is of the form, 
accelera:.-is.4

o ~ 2s 2l (COS4-1) 4 n 4+ 2 3 sin-4 (cos64-1) + 6b. 7!he R-Sg-R-P, R-Sz-?-i< and ',-Sg-?-P Cases.
(19) For =echanisms containi,.. SP pair, like the

a4(cos 4-1) + a5sin-4 + 36 " 0 R-Sg-R-? -echanism. the R-Sg-P-R ,nochanism And the
R-Sg-?-? mechanism, the input-outpit relationships can

2 2x be foun6 after simplif':in the expressions for finite

-using cosi a 4 ,sn - tan 2 screw displacements and the pair geometry constraints

4  14t 4 2 4 2 (see reference (241 for details).
l+zx_________

'See also Ref. 1241.
we get,

5



For the R-Sg-R-P mechanism the input-output Equation (29) is the input-output relationship.

relationship is quadratic in output displacement. All the terms al bi , ci , i = 1,2 are linear in sin

For the R-Sg-P-R mechanism, the input-output rela- 
i

tionship is quadratic in the output tangent half and co-,. Equation (29) can be simplified to give

angle. For the R-Sg-P-P mechanism the input-output I

relationship is linear. 6i x A - 0, a polynomial in tan (04/2) in terms

7. ANALYSIS OF FOUR LINK MECHANISMS CONTAINING AN

Sc PAIR of 81 a6 d link parameters (refer to reference 24] and
Table I7 for details.

The Sc pair has three degrees of freedom, so

" there can be only one cylindric joint and the two 
T.b. IV

other joints are revolute or prismatic. To analyze

four link mechanisms containing an Sc pair we need 
41 o

to consider equations ( 2) and ( 3). In order to h" *"z + 2 (Coos 4 ) V

get an expression between input 9 and output(s) - . ± +2(x4

-'":ndlor S4 0 we need to eliminate one joint rota- - j "3jb* 1 ,-) + e.4

tion and/or translation. :" ' " 2 - + Yia
b -" 

1 
SI 4 3 4

'. '.J'.T)Jb* ~* 1 
3
1(co.4

4
-1) 4 530084

" 7a. The R-Sc-C-R Case j A

In this case, S1 = S -0 . Equation ( 2) can be c .*1 A
) 

- . " + c -1) 4-- .3 -1_ I * " c(~ ' (c041) 
+ 

Yln%
written as, - ,.'b ).bj3 - 2

4 1 1 ( 3 -, 3 1 c2 ( o 4 - ) + e e 3 1 4

(Coss3-1)C3  + sin. 3  " + u +c
1T" S- 1 (2 3, 03 - C (1.V03)

3j 3 -i 3 3
1 a%

By writing the dot product of equation (25) with c *".. 9 c j -4C " 3 83 - 3

4 wI_
and u3j we get after simplification, -4 -. o) * (?g)1 - .3-(C'.j)• 1 *( , 3- (o'.3..o-(c"I)

(l-coso 3 )a + ain 3b + c - 0 "* 4 4. .4

13 . ('..!4 . u. )) + r4 (u - )1 - (m.. . (c.a- )1 4 1 4_ 4. 4.

where a c D bI  c .C A,* -(- 3
,bo. 3  I

I j 3j 1  - 3j (26) --(
'  " "

)6
"
I -. .

I 1 

1.

4. 1 l :--(€ . I... .

c (R xu u a u (cJ " ) ! j ' 3bz - 4.j j i _ j -3 3j j _j - .r)-T, .IZ (,.bl).(., -T ).

Simplifying equation ( 3) we obtain 11 I
-3 - 4 .6 .b"

a 2 (1-cos8 3 ) + balnA 3 + c 2  0, (27) c1 " '

""" "1. 4 c c .b€, ).[(. -b.).u I

where a2 - -(c b X3 jb - .

1 4
I! ~ ~b " (CI xb I)-Yj " 4 laJ' .. 2) ]b, . .Z=sZ X st skzn6,4(€°04-l) +xsme 20 16cskzZ 21 Zc~sZ )ie,+Vzncsl

- j j !.3jb" (.) " 2 (-89t71) - Yi( - + X4. It
2

8• 
+ 

16 (c0*8 4 -1)

C - (.C j o*"b*4 'b' 4- 1
I 

* 11o 00 4
-1) * y3ean94 + T42,no4(coef4-1) 4 5'1

1
M0 4 

+ T 61(coSS4-1)2

2 -a- - J4 4 Ise; 2* . a 3 (Coc-) -* ±331094 + Z4"104 Cosa84l) + ± X .2e8, .Z 2

Im Table II the expanded terms for X3jb* Y3jb* 11 "(_ 0 ,1 )51 281 (2A + c)

are given. We can eliminate A3 from (26) and (27) x* Q ' 5.(- 1 +) - 2!eI(242 + C,) *±'( + C')+

.- x 3
2  

2x 3  X3 215::Z,) * 3) + a(2 1 + ")) - 2183(2, + C1) , + ca)(

after using cosA3  =- and sin9 - -*

3 .- 2 3 2 1 - :b ) + a(2, - 210 (2A + a (2'.

1 - 2['.-o 3  
j , ) - 2[31(2A 3 3C]

x - tanO3 / 3 3 21(: - C1?(ZA C2 ))

2
The elininant is given by 1abj Ibci - lacl l 0, (x) " -

lacl Ibc 
lot

and the common root is given by x 3  - 2= 1 -- - 28"2 21 1

I abf ac~ 13 -2-.: 3 -21,~ 
2  3

where !abl - (2a+c )(2b 2 ) - (2bM)(2a +c2 ) It" 5 " c) 13 - 2.3 C, 4 tIC - ±1Y3 - 2,)

"bcj - 2blC - 2b c and (31) 6 . ::: 2- 2 4 - 2 , + " ,,3C2 - 2 3 2A3

1b c 2 c 2  2 1 2 1 * 2 1:1 - Al 2~ - 2 C3  - 2 3 ')

tact - (2a 1 +C)c 2  - (2a 2 +c 2 )c2 - 2aI c 2  - 2a2 c I -±2 - 2'cI -
1

' 2  -
2
Aj 1  z . 2 2 C2 - A,

, . |



Table IV rpnntinued) lat-c. The expr --:-. f~r inter-ediate joint angles
4, ! {- I I- o ' be f.und b ; :ak. ,jitable dot and cross pro-
8 o * * 04 + 66(tos94 -1) 5 n.st a manner s.. to the R-Sc-C-R case.

. 4 * 0- 9.-1)' + !7*10i4 (,ose 4 -1)2 + 
8
g(CCos8-1)s420' 4. .."ICAL rx '--

* * 4 6 d'O(CoS9i-). , 2 (tn (o.2
4

0-1)

1 9I K4(Oe. 4 -1)
3  

4 + 1 5 ( O4 1) - + 3i - ;R -= 1 + 4 lk

6 1  1 2%1 -Z1
2  

37 "; +0^

~+. 24j - ;
4- +* t3 T - 2Zz13 u + 0.38i - O.5k;A = 0.7071+ 0.7071 + Ok

44 . Jl( 4 * X47 
) 

- 2zZ" + -13Y2 - 2Z 3

'C X' 22, + 2 av - is the input. '.-knovns are 3' 4' and Sg.S 1 57" - 1 Y)3 -The p-c:s of te a:d in terns of are shown in
86 "X|6 

+ 
X61 1 - 2Z 1ZS + XZY2 - Z2 .1f g--:.e 7 and 8. 4 3 1

07 X +Y + V63 - 'I - 2"224

dtO . X Y
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Equation (30) gives 03* To get S3 and T we

again take suitable dot and cross products:
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2. (-S:-C-R Mechanism:
7b. The R-Sc-C-P. R-Sc-R-C and R-Sc-P-C Cases. a.--en

For the R-Sc-C-P, R-Sc-R-C and R-Sc-PIC mecha- - +0J +0" ; P3 1 +2j +Ok
nisma, the input-output relationship and the expres-. 3
sions for the intermediate joint variables can be P, " 2. +3j +%k ; R - Ii +lJ +1k
found after simplifying the expression for finite 0! +0.707J-0707V; 0.5771+0.577J+0.577k
screv displacement and the pair geometry constraints . : - 3  5
(see reference [24] f~r details). -. 7071+0.707J+-Ck ; b - li +oj +Ok

For the R-Sc-C-P mechanism the Input-output rela- 01 +0J +1k ;b* - li +OJ *0k

tionship 16 quadratic. For the R-Sc-R-C mechanism and is the input. -he unknowns are 03' 04 S4
the input-output equation is an eighth degrc!, poly- and . The plot of , in term
nomial in the output tangent half-anele. For the R- aigure 9, s of 6 Is given in

Sc-P-C case, the input-output relationship is 
quad-
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In this work, results of the investigation dealing with analysis

of spatial mechanisms containing higher pairs are presented. Com-

plete analytical expressions for the position, velocity and accelera-

tion analysis for several three-, four-, and five-link spatial

mechanisms containing higher pairs are presented. Also presented

are computer programs for the analysis of some of these mechanisms.

A higher pair as distinct from a lower pair allows minre

degrees-of-freedom between its elements. The kinematic analysis

of spatial mechanisms containing higher pairs is based on the

concept of finite screws and pair geometry constraints. Expres-

sions for finite screws and their derivatives have been developed

and expressed in a shorthand notation. The pair geometry con-

straints for sphere-plane, sphere-groove, sphere-slotted-cylinder

Ax
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and cylinder-plane higher pairs are presented. Using these pair

geometry constraints, and the finite screws and its derivatives,

several mechanisms containing the above mentioned higher pairs

have been analyzed for position, velocity and acceleration.

Computer programs are given for the analysis of some of the

typical three-, four-, and five-link mechanisms. The use of

the programs are demonstrated in the examples in Chapter VII.
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The material in this dissertation can be effectively

divided into two subtopics: philosophy of optimal mechanism

design, and optimization of dyad-based spatial mechanisms.

The first subtopic, philosophy of optimal mechanism

design, is intended to be general in nature, applying to all

types of mechanisms, both higher and lower pair, and both

planar and spatial. This is covered in Chapters One through

Three. Chapter One examines past approaches to mechanism

optimization. Chapter Two is a brief review of optimization

theory, particularly at it applies to mechanism optimization.

Chapter Three draws upon the insights gained in the first

two chapters to formulate a general approach to the mechanism

optimization problem.

The second subtopic of this dissertation, optimization

P (of dyad-based spatial mechanisms, is covered in Chapters

.ii



Four through Seven. This is actually a rather limited

. example of applying the philoscphy developed in the first

three chapters. Nevertheless, the mechanisins treated in

this section are believed to represent some of the most

useful motion generating spatial mechanisms, and, therefore,

those for which improved design theories are most urgently

needed. In Chapter Four, closed-form synthesis equations

are derived for dyads containic revolute (R), spheric (S)

and cylindric (C) pairs. Chapters Five and Six present

detailed examples of the optimization of the four-link

RCCC and five-link RSSR-SC and -SSR-SS mechanisms. Finally,

Chapter Seven outlines procedures for the optimization of

other dyad-based spatial mecha--sms, and offers suggestions

for further research.
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Function generation synthesis of spatial mechanisms with only three

links is achieved by employing higher pairs (sphere-plane (Sp), cylinder-

plane (Cp) and sphere-groove (Sg) pairs) to constrain the motion of two

links.

This dissertation shows the methods and procedures for obtaining the

equations for multiply-separated-precision point (MSP) synthesis for four

spatial function generators - R-Sp-R, R-Sp-P, R-Cp-C and R-Sg-C.

Higher pair constraint equations in vector form are utilized to

obtain closed-form solutions for the different synthesis cases of various

numbers of positions and specified and unknown parameters. The method

of elimination is used extensively to solve the resulting non-linear

* systems of equations.
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Kinematic synthesis and analysis of the four spatial function

generators is performed in vector notations and with screw displacements

in vector form. Explicit eq',!'tions are also obtained from the investi-

gation of the transmission caracteristics of these mechanisms.

The synthesis procedures just completed were then augmented by

developing design criteria f:r the .pair elements -Lo assure ra.nge of

mobility and avoidance of interference.
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